	STANDARD OPERATING PROCEDURE	No.	SOP-1500-WD-002
		Effective Date	2/10/2025
GUAM WATERWORKS AUTHORITY	Fire Hydrant Flushing and Maintenance	Final Approver	Miguel C. Bordallo, P.E. General Manager
		Revision Letter	A

1.0 Purpose

This Standard Operating Procedure (SOP) establishes guidelines for flushing hydrants within the Guam Waterworks Authority's (GWA) water system. It is a fundamental aspect of GWA's preventive maintenance program to maintain water quality and system reliability. This process helps to maintain flow and pressure in the system and remove sediment and stagnant water. It also enables GWA to gather important information about the hydrants and water system, such as flow pressure and flowing gallons. Additionally, GWA inspects the overall condition of the fire hydrants to ensure they function properly and are ready for emergency situations.

2.0 Scope

This SOP is applicable to all GWA personnel directly involved in maintaining and operating the water distribution system. It specifically focuses on the routine flushing of both wet and dry barrel fire hydrants and covers procedures for planning and executing hydrant inspection, maintenance, and flushing activities.

3.0 Policy

It is the policy of GWA to conduct routine inspections and maintenance of fire hydrants at least annually and after each use; however, flushing may be done periodically to maintain water quality and ensure proper operation and system reliability. This SOP complies with the American National Standards Institute (ANSI)/American Water Works Association (AWWA) C502-14 for dry-barrel fire hydrants and C503-18 for wet-barrel fire hydrants.

4.0 Definitions

- 4.1. <u>American National Standards Institute (ANSI):</u> A private, non-profit organization that manages the U.S. voluntary standards and conformity assessment system, overseeing the development of standards for products, services, processes, and systems in the U.S., ensuring compatibility with international standards.
- 4.2. <u>American Water Works Association (AWWA):</u> An international, nonprofit, scientific, and educational society accredited by the ANSI, dedicated to ensuring safe and reliable water. It sets standards and best practices for water quality, treatment, and distribution.
- 4.3. **Auxiliary Valve:** The valve placed in the line leading between the hydrant and the main; the lateral line.
- 4.4. **Chlorine Comparator Kit:** A chlorine test kit with DPD reagents for free and total residual analysis, used to measure the chlorine level present in water.
- 4.5. **<u>Deflector:</u>** An instrument used to reduce or deflect the pressure and force of flowing water from fire hydrants. It is used to protect streets, traffic, and private property from damage resulting from the flow of water from a fire hydrant.
- 4.6. **Diffuser:** See definition for Deflector.

- 4.7. **Dry Barrel Hydrant:** Manufactured in accordance with AWWA Standard C503, and has the main valve located below the ground and a drain valve that allows the barrel section to drain automatically.
- 4.8. **Flow Meter:** An instrument used to measure the flow rate and the water main capacity from the fire hydrant. It displays the flow rate and pressure via an integral digital display¹.
- 4.9. **Hydrant Wrench:** A tool used to remove fire hydrant caps and open the valve of the hydrant. Only regulation fire hydrant wrenches approved by GWA shall be used for the operation of fire hydrants².
- 4.10. N, N-diethyl-p-phenylenediamine (DPD) Method: A colorimetric method that relies on the reaction between chlorine and DPD reagents, which produces a colored compound. The intensity of the color is directly proportional to the chlorine concentration in the water sample³.
- 4.11. <u>Pitot Gauge:</u> An instrument used to measure static pressure in fire hydrants. Measures the pressure of flowing water from fire hydrants.
- 4.12. **Pressure Gauge:** An instrument used for measuring and displaying the pressure of a liquid or gas.
- 4.13. **Rinami:** A software solution that integrates mobile applications with Oracle JD Edwards EnterpriseOne, enabling real-time access and management of Work Orders (WOs) from the field using a tablet.
- 4.14. <u>Trouble Dispatch Center:</u> The GWA 24/7 customer complaint response center. The Trouble Dispatch Center is responsible for receiving customer complaints and generating and assigning Work Order requests.
- 4.15. Water / Wastewater System Control Center (SCC): GWA's communications hub connecting field personnel with operation and management. GWA's Rovers send and receive data from the field to SCC. Problems, repairs, leaks, overflows, low water pressure, data collection for reservoir, etc. are communicated to SCC for generation of work orders and assignments.
- 4.16. <u>Water Hammer:</u> A hydraulic shock or surge occurs due to a sudden change in the pipeline's flow direction, causing noise, vibration, and potential pipe damage.
- 4.17. **Wet Barrel Hydrant:** Manufactured in accordance with AWWA Standard C502, and has the main valve located on each outlet nozzle.

5.0 Roles and Responsibilities

5.1.	General Manager	Approves this SOP and all its subsequent changes.
5.2.	Assistant General Manager for Operations (AGM-O)	Oversees the development, revision, and implementation of this SOP as the Policy Owner.

¹ Accurate Flow Meter Rental for Fire Hydrant Testing: Flowhire

² 28 GAR §2116 (c), Hydrant Wrenches.

³ Comparing Chlorine Measurement Methods (ysi.com)

5.3.	Operations & Maintenance (O&M) Manager, Water Distribution	Reviews this SOP annually and makes necessary changes to be presented to the AGM-O for consideration. Ensures that proper training is provided to the
		affected employees to ensure proper compliance with this SOP.
5.4.	Supervisor, Operation & Maintenance (O&M)	Monitors personnel to ensure compliance with this SOP and provides guidance if needed.
		Uses the JDE CAM to assign, track and manage all preventative maintenance activity.
		Gathers hydrant information, such as GIS mapping, to identify the hydrant location(s) and asset information.
		Notifies the SCC 48 hours before planned road closures and ensures the required permits are obtained.
5.5.	Trouble Dispatch Center	Receive information of valve exercising activity and generate Work Order requests.
		Prepare water outage/road closure alert via Mailchimp and text message based on the information provided by the O&M leader or supervisor.
		Assign work orders to maintenance personnel and coordinate with the WSCC dispatcher for necessary action.
5.6.	Water Wastewater System Control Center (SCC)	Receives critical report or information from GWA field personnel about the operation of GWA facility.
		Relays the report or information received and updates and logs all communications received in the SCC records for its reference.
5.7.	Maintenance Personnel	Strictly abide by the contents of this SOP and conduct activities accordingly. When confronted by a situation not covered by this SOP or requiring clarification, seek the manager's or supervisor's assistance.

6.0 Procedure Description

6.1. **Safety Considerations:** Adhere to all safety protocols. Safety briefings are held weekly to discuss these protocols. Use appropriate personal protective equipment (PPE) needed to perform the required work.

6.2. **General Preparations:**

- 6.2.1. **Schedule and Assignment:** Preventive maintenance (PM) is performed based on various factors, including the manufacturer's recommendations, regulatory requirements, and historical data. The recommended PM is added and entered into the JDE CAM program to generate a Work Order (WO). The Maintenance Supervisor (Supervisor) shall use the JDE CAM to assign, track and manage all PM activity⁴.
- 6.2.2. **Data Collection:** The Supervisor will gather hydrant information, such as GIS mapping, to identify the hydrant's location(s) and asset information.
- 6.2.3. **Road Closures:** If the work requires a road closure, the Supervisor shall notify the Water Wastewater System Control Center (SCC) 48 hours before the planned road closure⁵ and ensure the required permits are obtained.
- 6.2.4. **High Traffic Areas/Busy Intersections:** Contact SCC to request additional traffic control assistance from the Guam Police Department. For further guidance, refer to GWA's traffic control policy⁶.
- 6.3. **Pre-Departure Preparations:** The following shall be performed prior to departing the station:
 - 6.3.1. Notify the Supervisor or the O&M Manager for Water Distribution of the day's scheduled preventive maintenance (PM).
 - 6.3.2. **Vehicle Pre-Departure Checklist:** Conduct an inspection of each assigned GWA Official Vehicle daily to ensure that the vehicles are fully functional, ready for use, and stocked with the proper tools and equipment needed to perform the task. See the *GWA Official Vehicle Pre-Departure Checklist* (Attachment 1).
- 6.4. **Inspection & Flushing Procedures:** Document all observations made during inspection and work performed during the PM and flushing process. See *Hydrant Inspection & Flushing Checklist* (Attachment 2).
 - 6.4.1. Upon arrival at the site, record the date, time of arrival, and location in the WO.
 - 6.4.2. Establish traffic control measures around the fire hydrant and setup visible street signs to ensure a safe working area.
 - 6.4.3. Conduct a preliminary inspection of the hydrant. Check the overall appearance for any visible damage or obstructions, including loose or missing parts, overgrown vegetation, or abandoned vehicle(s) or objects. Remove any obstructions that affect the view of the hydrant.
 - 6.4.4. Check for leaks at the joint, seals, and packing.
 - 6.4.5. Record the hydrant ID and initial condition in the WO.
 - 6.4.6. Check to see whether the hydrant needs to be raised or lowered due to changes in the ground-surface grade. If adjustments are needed, schedule the work.
 - 6.4.7. Check the breakaway device for damage.

⁴ SOP GM-062, Preventive Maintenance Scheduling & Assignment.

⁵ SOP-1500-WP-001, Water Outage & Road Closure Notification to the Media/Public.

⁶ SOP T.103, *Traffic Control Policy*.

- 6.4.8. Remove the outlet nozzle caps and visually observe for any leakage on the disc/seat. For dry-barrel hydrants, listen for valve-washer leakage. A listening stick may be used to determine if water is still flowing through the valve gate.
- 6.4.9. Install a pressure gauge to the hydrant, measure and record the system pressure (which should be within a minimum of 20 psi to a maximum of 90 psi⁷), and input the recorded data into the WO and *Water Loss Form* (Attachment 3) in the "Water Loss Details" section under "Pressure Before Repair (psi)."
- 6.4.10. Determine the method outlined in §6.5. to capture water loss:
 - 6.4.10.1. Fire Hydrant Flow Meter Measurement.
 - 6.4.10.2. Pitot Gauge.
 - 6.4.10.3. Missouri Rural Water Association (MRWA) Hydrant Calculation.
- 6.4.11. Install the instrument used in the preferred method to the hydrant.
- 6.4.12. Attach a deflector or diffuser to protect the street, traffic, and private property from water expelled at high velocity.
- 6.4.13. Open the hydrant slowly to prevent water hammer. **Always Slowly Open, Slowly Close.** Flush to remove foreign material from the interior, sediment, and stagnant water. Continue to flush until the water is clear.
- 6.4.14. Measure the free chlorine residual levels using the DPD method⁸. The free chlorine residual should be a minimum of 0.2 mg/L and shall not exceed the Maximum Residual Disinfectant Level (MRDL) of 4.0 mg/L⁹. If chlorine residual is below the minimum of 0.2 mg/L continue flushing till minimum residual is attained.
- 6.4.15. Open each valve and test for ease of operation. If the valve stem action is tight, open and close several times until the opening and closing actions are smooth and free.
- 6.4.16. Record the duration of the flush and note the water clarity.
- 6.4.17. Remove the instrument from the hydrant.
- 6.4.18. Slowly close the hydrant and remove the deflector. Always Slowly Open, Slowly Close.
- 6.4.19. Check the drain valve's operation by placing one hand's palm over the outlet nozzle. Drainage should be sufficiently rapid to create noticeable suction. This step only applies to dry-barrel hydrants.
- 6.4.20. Use a listening device to check the main valve for leakage. **This step only applies to dry-barrel hydrants.**
- 6.4.21. If the main valve is not functioning properly, notify the Supervisor or Manager. This information will help identify hydrants that need to be replaced.

⁷ 28 GAR §2103 (I), Minimum Water Delivery Pressure.

⁸ A colorimetric chlorine test kit, such as the CN-66 from Hach Co. or an equivalent, may be used.

⁹ 40 CFR §141.65, Maximum Residual Disinfectant Levels.

- 6.4.22. Check operating nut threads.
- 6.4.23. Install the pressure gauge to the hydrant and take another reading to determine if there have been any positive or negative changes after the work. Measure and record the system pressure in the WO and Water Loss Form in the "Water Loss Details" section under "Pressure After Repair (psi)."
- 6.4.24. Remove the pressure gauge and flow meter used to measure and record the flow rate. Input the recorded data into the WO and Water Loss Form in the "Water Volume Calculation" section.
- 6.4.25. Remove outlet-nozzle caps, clean the threads, and check the condition of the gaskets. Replace if necessary.
- 6.4.26. Replace the outlet-nozzle cap. Leave it loose enough to allow air to escape. **This step only applies to dry-barrel hydrants.**
- 6.4.27. Replace the caps. Tighten them enough to form a good seal, then back off slightly so they are not excessively tight. If any caps are missing, note and record the number and size of missing caps. Replace them if available and on-hand. If not available, initiate order.
- 6.4.28. Locate and exercise the auxiliary valve¹⁰. If there are no leaks on the hydrant, leave the valve in the open position.
- 6.4.29. If the hydrant is inoperable or leaking, tag it with a clearly visible mark and schedule it for repair.
- 6.5. **Fire Hydrant Condition Assessment:** During inspection and maintenance, fire hydrants must be assessed to ensure their physical condition is recorded and updated in CAM using the RINAMI tablet (see **Attachment 4**). This process helps prioritize replacements under the fire hydrant capital improvement program.
 - 6.5.1. Use the established *Fire Hydrant Rating Scale* found in **Attachment 5** (highlighted in red) to evaluate the physical condition of the fire hydrant.
- 6.6. **Flow Rate and Water Loss:** Accurate recording of water loss is essential for water management. One of the following methods shall be used to capture the flow rate and water loss during the flushing process. The data must be recorded in the WO and the Water Loss Form.
 - 6.6.1. Fire Hydrant Flow Meter Measurement:
 - 6.6.1.1. Attach the flow meter to the hydrant¹¹ and record the start meter reading.
 - 6.6.1.2. Open the hydrant fully and observe the flow rate reading on the meter.
 - 6.6.1.3. Record the flow rate in gallons per minute (GPM).
 - 6.6.1.4. After flushing, close the hydrant slowly to prevent water hammer.

¹⁰ Refer to the *Valve Exercising & Maintenance* SOP for further guidance.

¹¹ The flow meter needs to be calibrated correctly on an annual basis.

6.6.1.5. Record the end reading on the flow meter.

6.6.2. Pitot Gauge:

- 6.6.2.1. Attach the pitot gauge to the hydrant and open the hydrant fully.
- 6.6.2.2. Insert the pitot tube. It should be held downstream and in the center of the nozzle.
- 6.6.2.3. Read the pressure from the pitot gauge.
- 6.6.2.4. Use the *Theoretical Discharge Through Circular Orifices Chart* (Attachment6) from the National Fire Protection Association (NFPA) 291 to convert pressure to flow rate (GPM).
- 6.6.2.5. Record the flow rate and calculate the total water loss by multiplying the flow rate by the duration of the flush.

6.6.3. Missouri Rural Water Association (MRWA) Hydrant Calculation:

- 6.6.3.1. Measure the outlet pressure using a pressure gauge.
- 6.6.3.2. Determine the nozzle size of the hydrant.
- 6.6.3.3. Use the MRWA Hydrant or Pipe Flush Flow Calculator (MRWA Calculator) (Attachment 7) to calculate the flow rate based on the pressure and nozzle size. The MRWA Calculator may be accessed on their website at https://moruralwater.org/water-tools-files/tool flush.php.
- 6.6.3.4. Record the flow rate and calculate the total water loss by multiplying the flow rate by the duration of the flush.

6.7. **General Post Flushing Procedures:**

- 6.7.1. **System Checks:** Check the pressure reading and record the data to ensure the system pressure returns to normal.
- 6.7.2. **Site Cleanup:** Remove all safety cones from the site, ensure the site is clean and free of debris or equipment, and restore any disturbed landscaping or public property to its original condition.
- 6.7.3. **Documentation:** Ensure all required data is recorded in the WO and the *Water Loss Form*, including the date, time, hydrant location, pressure, flow rate, water loss, duration of flushing, and any observations or issues encountered.
- 6.8. **Troubleshoot Issues and Response Procedures:** Conduct a visual inspection to identify the source of the problem.
 - 6.8.1. Use effective troubleshooting techniques to determine the cause of the issue.
 - 6.8.2. Use the comprehensive *Troubleshooting Checklist for Hydrants* (Attachment 8) to address and resolve identified issues thoroughly.
 - 6.8.3. Make necessary repairs.
 - 6.8.4. Contact SCC and the Supervisor or Manager to request additional support if needed.

6.9. **Training:** The O&M Manager should conduct training for the fire hydrant flushing and maintenance when needed. New or relevant employees must receive training and sign the *Employee's Acknowledgment Receipt* (Attachment 9) to confirm their understanding and compliance with the procedures outlined in this SOP.

6.10. Non-Compliance to this SOP:

- 6.10.1. Employee: Failure of the employee to adhere and comply with any of the guidelines, policies, and procedures stated herein may result in progressive or adverse disciplinary action, including but not limited to suspension, demotion, or termination of employment as provided by GWA Personnel Rules and Regulations (PR&R).
- 6.10.2. **Supervisors and Managers:** Failure of the Manager or Supervisor to report and enforce all the guidelines, policies, and procedures stated herein may result in progressive or adverse disciplinary action, including but not limited to suspension, demotion, or termination or employment as provided by GWA PR&R.

7.0 Document Approvals

Role	Position	Name of Approver	Approval Signature	Date Approved
	O&M Manager, Water Distribution	Vincent Pangelinan		
Authors	Legal Secretary III	Antonette Dione Gutierrez	Approval on File	On File
	Assistant General Manager for			
Policy Owner	Operations (AGM-O)	Thomas A. Cruz, P.E.	Approval on File	On File
Final Approver	General Manager	Miguel C. Bordallo, P.E.	Page 1	Page 1

By existing Guam and Federal laws, the contents of this SOP were reviewed thoroughly by its Policy Owner and was found to be:

⊠ appropriate for publication on the GWA website without compromising the security of GWA's system or the public's health and safety.

☐ not appropriate for publication on the GWA website because it might jeopardize the security of GWA's system or the public's health and safety.

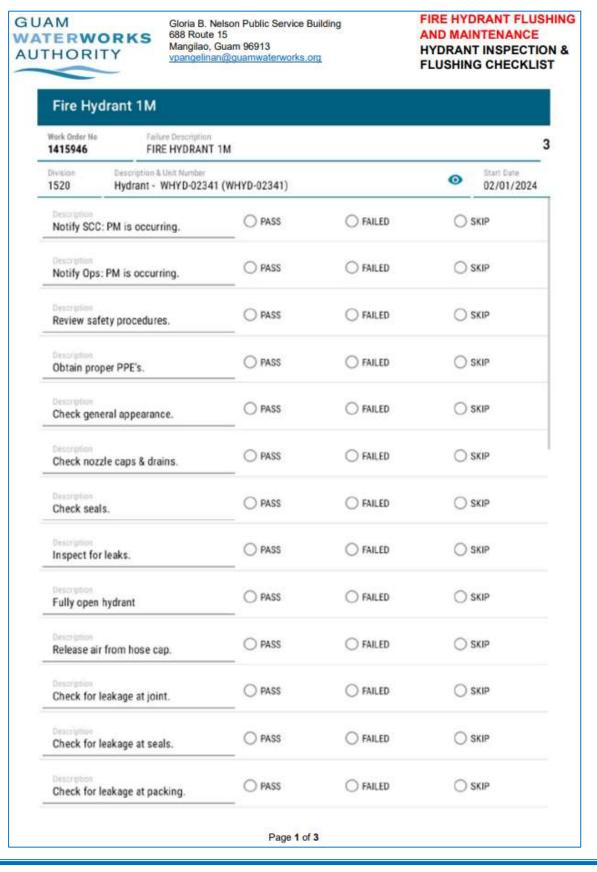
8.0 Records of Revisions

All suggestions for improvement shall be directed to the Policy Owner indicated below. The Policy Owner will consider input received, develop recommendations on how to address the suggestions and obtain authorization to make the recommended changes. Updates, revisions, corrections and waivers to this SOP shall be made in writing and be approved by the GM.

- 8.1. Policy Owner: Assistant General Manager of Operations
- 8.2. Authorization: General Manager

Effective Date	Revision Letter	Document Authors	Description of Change
		Vincent Pangelinan	
Page 1	Α	Antonette Dione Gutierrez	Initial Release of SOP

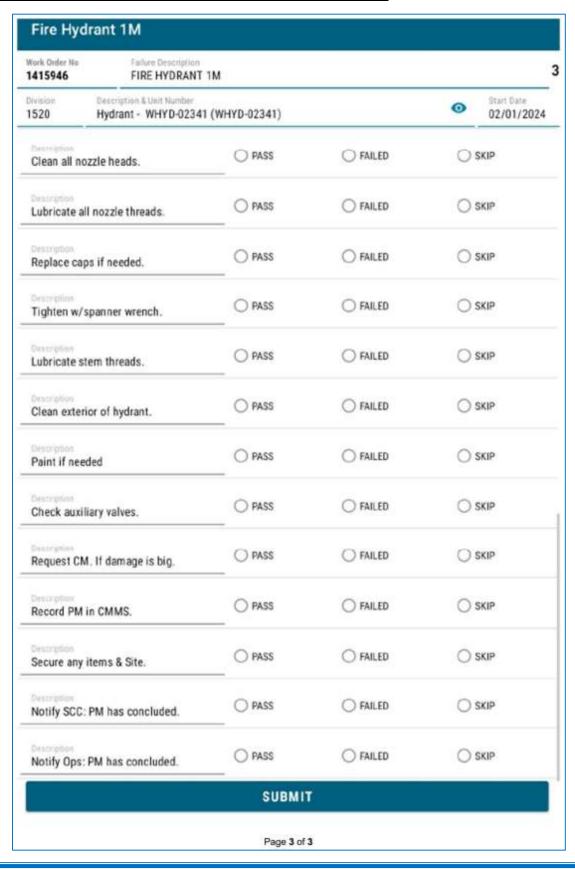
9.0 References

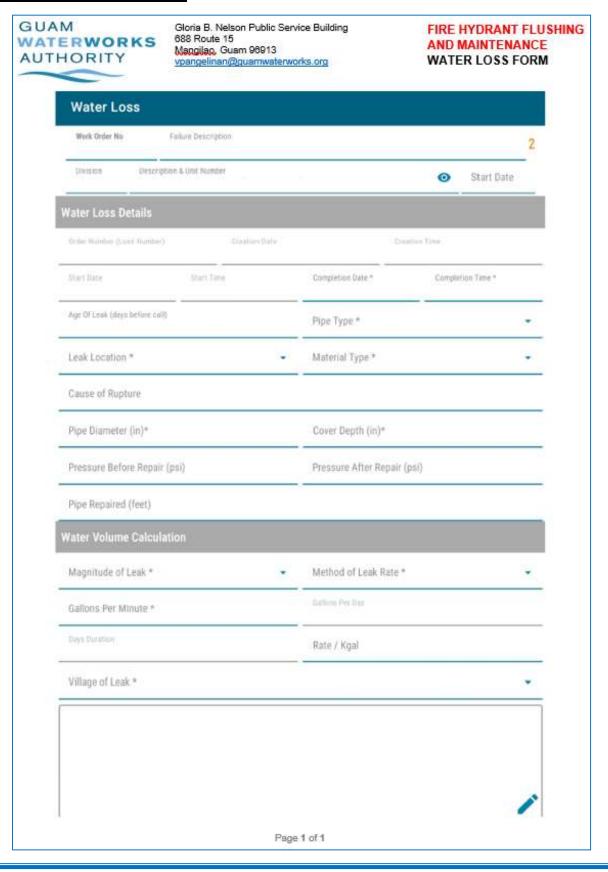

9.1. GWA Employee Safety Handbook.

- 9.2. SOP on Electrical Safety.
- 9.3. GWA's Traffic Control Plan.
- 9.4. SOP on Lock-out / Tag-out (Energy Hazard Control).
- 9.5. SOP GM-062, Preventive Maintenance Scheduling & Assignment.
- 9.6. SOP-1500-WP-001, Water Outage & Road Closure Notification to the Media/Public.
- 9.7. Standard Methods. 4500-Cl G. Chlorine by DPD. https://www.nemi.gov/methods/method_summary/7431/
- 9.8. 28 GAR §2116 (c), *Hydrant Wrenches*. https://guamwaterworks.org/Adobe%20Files/pdf28GAR001-2.pdf
- 9.9. Comparing Chlorine Measurement Methods. <a href="https://www.ysi.com/ysi-blog/water-blogged-blog/2023/10/comparing-chlorine-measurement-methods?utm-source=cta&utm-medium=email&utm-campaign=2023-11_Utilities+Newsletter er&mkt_tok=MjQwLVVUQi0xNDYAAAGPxSL7DdUXJLsqR2O17s3BcY9tud3Rhsz0gB2f7GLZBE9rR1CJUq0QR3DxXrswfRF-Pgf_JKX6ZerM87XtvQCSsh_qU0Y_wFP56jjCFRnM0njaWQ
- 9.10. 40 CFR §141.65, *Maximum Residual Disinfectant Levels*. https://www.ecfr.gov/current/title-40/chapter-l/subchapter-D/part-141/subpart-G/section-141.65#p-141.65(a)
- 9.11. What is the Water Hammer Effect? https://www.electricsolenoidvalves.com/blog/what-is-the-water-hammer-effect/
- 9.12. Fire Hydrant Testing: NFPA Guidance & How To Do It. https://blog.qrfs.com/370-nfpa-guidance-on-fire-hydrant-testing/
- 9.13. Pitot Gauges: How Do I Calculate the PSI to GPM Conversion? https://blog.qrfs.com/240-pitot-gauges-how-do-i-calculate-the-psi-to-gpm-conversion/#:~:text=In%20other%20words%2C%20if%20your,rate%20of%20flow%3A%202%2C273.4%20GPM
- 9.14. WSRB Guide to Hydrant Flow Testing. https://www1.wsrb.com/resources/hydrant-flow-testing
- 9.15. How to Use a Pitot Gauge for Hydrant Flow Testing. https://blog.qrfs.com/46-how-to-use-a-pitot-gauge-for-hydrant-flow-testing/
- 9.16. MRWA Hydrant or Pipe Flush Flow Calculator. https://moruralwater.org/water-tools-files/tool_flush.php
- 9.17. 28 GAR Chapter 2, Guam Waterworks Authority. https://guamwaterworks.org/Adobe%20Files/pdf28GAR001-2.pdf

Attachment 1: GWA Official Vehicle Pre-Departure Checklist

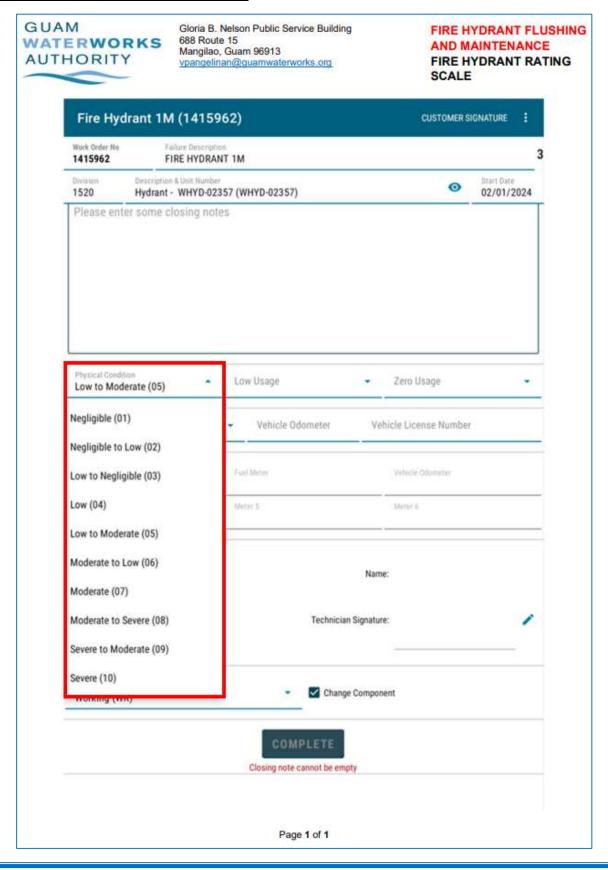
GUAM WATERWORKS AUT OPERATOR 1 (DRIVER): OPERATOR 2 (PASSENGER SUPERVISOR/MANAGER: YEAR: MAKE: LICENSE PLATE NO.: ODOMETER READING	HORITY N		distor	DATE: DIVISION CONTAC	INS. EXP DATE:
Body	Poor	Interior Good Hom		Poor	Fluid Levels High Normal Low Oil Dipstick Oil
EMPLOYEE NAME: SUPERVISOR/ MANAGER:		SIGNATURE: _			DATE:


Attachment 2: Hydrant Inspection & Flushing Checklist


Attachment 2: Hydrant Inspection & Flushing Checklist (Cont.)

Work Order No 1415946	Failure Description FIRE HYDRAN			
	scription & Unit Number drant - WHYD-0234	41 (WHYD-02341)		Start Date 02/01/2024
Check for leakage	ge at joint.	O PASS	○ FAILED	○ SKIP
Check for leakage	ge at seals.	O PASS	O FAILED	○ SKIP
Description Check for leakage	ge at packing.	O PASS	○ FAILED	○ SKIP
Description Check leakage i	n outlet cap.	O PASS	○ FAILED	○ SKIP
Close Hydrant.		O PASS	FAILED	○ SKIP
Observe drainag	e.	O PASS	○ FAILED	○ SKIP
Flush hydrant.		O PASS	○ FAILED	○ SKIP
Will flow damag	e area?	O PASS	○ FAILED	○ SKIP
Description Close hydrant sl	lowly.	O PASS	FAILED	○ SKIP
Description Clean all nozzle	heads.	O PASS	○ FAILED	○ SKIP
Description Lubricate all noz	zle threads.	O PASS	O FAILED	○ SKIP
Description Replace caps if	needed.	O PASS	○ FAILED	○ SKIP
Description Tighten w/span	ner wrench.	O PASS	FAILED	○ SKIP

Attachment 2: Hydrant Inspection & Flushing Checklist (Cont.)


Attachment 3: Water Loss Form

Attachment 4: Fire Hydrant Condition Assessment

Attachment 5: Fire Hydrant Rating Scale

Attachment 6: Theoretical Discharge Through Circular Orifices Chart

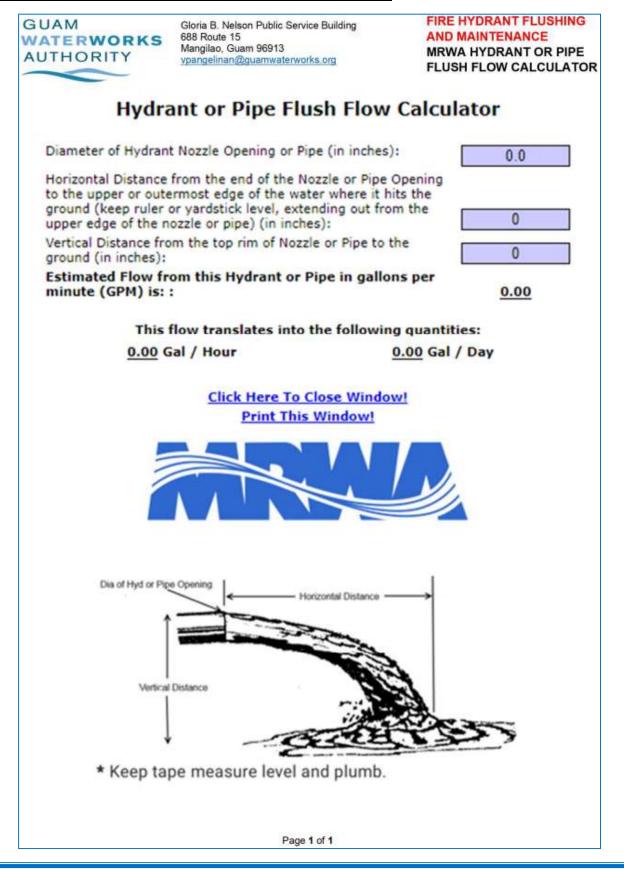
GUAM WATERWORKS AUTHORITY

Gloria B. Nelson Public Service Building 688 Route 15 Mangilao, Guam 96913 wpangelinan@guamwaterworks.org FIRE HYDRANT FLUSHING AND MAINTENANCE THEORETICAL DISCHARGE THROUGH CIRCULAR ORIFICES CHART

Table 4.10.1(a) Theoretical Discharge Through Circular Orifices (U.S. Gallons of Water per Minute)

Pilot		Velocity						Orifice	Size (in.)					
Pressure*	Feet †	Discharge											şi.	
(psi)		(ft/sec)	2	2.25	2.375	2.5	2.625	2.75	3	3.25	3.5	3.75	4	4.5
1	2.31	12.20	119	151	168	187	206	226	269	315	366	420	477	604
2	4.61	17.25	169	214	238	264	291	319	380	446	517	593	675	855
3	6.92	21.13	207	262	292	323	356	391	465	546	633	727	827	1047
4	9.23	24.39	239	302	337	373	411	451	537	630	731	839	955	1209
5	11.54	27.26	267	338	376	417	460	505	601	705††	817	938	1068	1351
6	13.84	29.87	292	370	412	457	504	553	658	772	895	1028	1169	1480
7	16.15	32.26	316	400	445	493	544	597	711	834	967	1110	1263	1599
8	18.46	34.49	338	427	476	528	582	638	760	891	1034	1187	1350	1709
9	20.76	36.58	358	453	505	560	617	677	806	946	1097	1259	1432	1813
10	23.07	38.56	377	478	532	590	650	714	849	997	1156	1327	1510	1911
11	25.38	40.45	396	501	558	619	682	748	891	1045	1212	1392	1583	2004
12	27.68	42.24	413	523	583	646	712	782	930	1092	1266	1454	1654	2093
13	29.99	43.97	430	545	607	672	741	814	968	1136	1318	1513	1721	2179
14	32.30	45.63	447	565	630	698	769	844	1005	1179	1368	1570	1786	2261
15	34.61	47.22	462	585	652	722	796	874	1040	1221	1416	1625	1849	2340
16	36.91	48.78	477	604	673	746	822	903	1074	1261	1462	1679	1910	2417
17	39.22	50.28	492	623	694	769	848	930	1107	1300	1507	1730	1969	2491
18	41.53	51.73	506	641	714	791	872	957	1139	1337	1551	1780	2026	2564
19	43.83	53.15	520	658	734	813	896	984	1171	1374	1593	1829	2081	2634
20	46.14	54.54	534	676	753	834	920	1009	1201	1410	1635	1877	2135	2702
22	50.75	57.19	560	709	789	875	964	1058	1260	1478	1715	1968	2239	2834
24 26	55.37 59.98	59.74 62.18	585 609	740 770	825 858	914 951	1007 1048	1106 1151	1316 1369	1544 1607	1791 1864	2056 2140	2339 2434	2960 3081
28	64.60	64.52	632	799	891	987	1048	1194	1421	1668	1934	2220	2526	3197
30	69.21	66.79	654	827	922	1022	1126	1236	1421	1726	2002	2298	2615	3310
32	73.82	68.98	675	855	952	1022	1163	1277	1519	1783	2068	2374	2701	3418
34	78.44	71.10	696	881	981	1033	1199	1316	1566	1838	2131	2447	2784	3523
36	83.05	73.16	716	906	1010	1119	1234	1354	1611	1891	2193	2518	2865	3626
38	87.67	75.17	736	931	1038	1150	1268	1391	1656	1943	2253	2587	2943	3725
40	92.28	77.11	755	955	1065	1180	1300	1427	1699	1993	2312	2654	3020	3822
42	96.89	79.03	774	979	1091	1209	1333	1462	1740	2043	2369	2719	3094	3916
44	101.51	80.88	792	1002	1116	1237	1364	1497	1781	2091	2425	2783	3167	4008
46	106.12	82.70	810	1025	1142	1265	1395	1531	1821	2138	2479	2846	3238	4098
48	110.74	84.48	827	1047	1166	1292	1425	1563	1861	2184	2533	2907	3308	4186
50	115.35	86.22	844	1068	1190	1319	1454	1596	1899	2229	2585	2967	3376	4273
52	119.96	87.93	861	1089	1214	1345	1483	1627	1937	2273	2636	3026	3443	4357
54	124.58	89.61	877	1110	1237	1370	1511	1658	1974	2316	2686	3084	3508	4440
56	129.19	91.20	893	1130	1260	1396	1539	1689	2010	2359	2735	3140	3573	4522
58	133.81	92.87	909	1150	1282	1420	1566	1719	2045	2400	2784	3196	3636	4602
60	138.42	94.45	925	1170	1304	1445	1593	1748	2080	2441	2831	3250	3698	4681
62	143.03	96.01	940	1189	1325	1469	1619	1777	2115	2482	2878	3304	3759	4758
64	147.65	97.55	955	1209	1347	1492	1645	1805	2148	2521	2924	3357	3820	4834
66	152.26	99.07	970	1227	1367	1515	1670	1833	2182	2561	2970	3409	3879	4909
68	156.88	100.55	984	1246	1388	1538	1696	1861	2215	2599	3014	3460	3937	4983
70	161.49	102.03	999	1264	1408	1560	1720	1888	2247	2637	3058	3511	3995	5056
72	166.10	103.47	1013	1282	1428	1583	1745	1915	2279	2674	3102	3561	4051	5127
74	170.72	104.90	1027	1300	1448	1604	1769	1941	2310	2711	3144	3610	4107	5198
76 70	175.33	106.30	1041	1317	1467	1626	1793	1967	2341	2748	3187	3658	4162	5268
78	179.95	107.69	1054	1334	1487	1647	1816	1993	2372	2784	3228	3706	4217	5337
80	184.56	109.08	1068	1351	1505	1668	1839	2018	2402	2819	3269	3753	4270	5405

Attachment 6: Theoretical Discharge Through Circular Orifices Chart (Cont.)


Table 4.10.1(a) Theoretical Discharge Through Circular Orifices (U.S. Gallons of Water per Minute)

Pilot		Velocity						Orifice S	Size (in.)					
Pressure*	Feet †	Discharge												
(psi)		(ft/sec)	2	2.25	2.375	2.5	2.625	2.75	3	3.25	3.5	3.75	4	4.5
82	189.17	110.42	1081	1368	1524	1689	1862	2043	2432	2854	3310	3800	4323	5472
84	193.79	111.76	1094	1385	1543	1709	1885	2068	2461	2889	3350	3846	4376	5538
86	198.40	113.08	1107	1401	1561	1730	1907	2093	2491	2923	3390	3891	4428	5604
88	203.02	114.39	1120	1417	1579	1750	1929	2117	2519	2957	3429	3936	4479	5668
90	207.63	115.68	1132	1433	1597	1769	1951	2141	2548	2990	3468	3981	4529	5733
92	212.24	116.96	1145	1449	1614	1789	1972	2165	2576	3023	3506	4025	4579	5796
94	216.86	118.23	1157	1465	1632	1808	1994	2188	2604	3056	3544	4068	4629	5859
96	221.47	119.48	1169	1480	1649	1827	2015	2211	2631	3088	3582	4111	4678	5921
98	226.09	120.71	1182	1495	1666	1846	2035	2234	2659	3120	3619	4154	4726	5982
100	230.70	121.94	1194	1511	1683	1865	2056	2257	2686	3152	3655	4196	4774	6043
102	235.31	123.15	1205	1526	1700	1884	2077	2279	2712	3183	3692	4238	4822	6103
104	239.93	124.35	1217	1541	1716	1902	2097	2301	2739	3214	3728	4279	4869	6162
106	244.54	125.55	1229	1555	1733	1920	2117	2323	2765	3245	3763	4320	4916	6221
108	249.16	126.73	1240	1570	1749	1938	2137	2345	2791	3275	3799	4361	4962	6280
110	253.77	127.89	1252	1584	1765	1956	2157	2367	2817	3306	3834	4401	5007	6338
112	258.38	129.05	1263	1599	1781	1974	2176	2388	2842	3336	3869	4441	5053	6395
114	263.00	130.20	1274	1613	1797	1991	2195	2409	2867	3365	3903	4480	5098	6452
116	267.61	131.33	1286	1627	1813	2009	2215	2430	2892	3395	3937	4519	5142	6508
118	272.23	132.46	1297	1641	1828	2026	2234	2451	2917	3424	3971	4558	5186	6564
120	276.84	133.57	1308	1655	1844	2043	2252	2472	2942	3453	4004	4597	5230	6619
122	281.45	134.69	1318	1669	1859	2060	2271	2493	2966	3481	4038	4635	5273	6674
124	286.07	135.79	1329	1682	1874	2077	2290	2513	2991	3510	4070	4673	5317	6729
126	290.68	136.88	1340	1696	1889	2093	2308	2533	3015	3538	4103	4710	5359	6783
128	295.30	137.96	1350	1709	1904	2110	2326	2553	3038	3566	4136	4748	5402	6836
130	299.91	139.03	1361	1722	1919	2126	2344	2573	3062	3594	4168	4784	5444	6890
132	304.52	140.10	1371	1736	1934	2143	2362	2593	3086	3621	4200	4821	5485	6942
134	309.14	141.16	1382	1749	1948	2159	2380	2612	3109	3649	4231	4858	5527	6995
136	313.75	142.21	1392	1762	1963	2175	2398	2632	3132	3676	4263	4894	5568	7047

Notes:

- (1) This table is computed from the formula $Q=29.84 {\rm cd}^2 \sqrt{p}$, with c=1.00. The theoretical discharge of seawater, as from fireboat nozzles, can be found by subtracting 1 percent from the figures in Table 4.10.2.1, or from the formula $Q=29.84 {\rm cd}^2 \sqrt{p}$.
- (2) Appropriate coefficient should be applied where it is read from hydrant outlet. Where more accurate results are required, a coefficient appropriate on the particular nozzle must be selected and applied to the figures of the table. The discharge from circular openings of sizes other than those in the table can readily be computed by applying the principle that quantity discharged under a given head varies as the square of the diameter of the opening.
- * This pressure corresponds to velocity head.
- + 1 psi = 2.307 ft of water. For pressure in bars, multiply by 0.01.

Attachment 7: MRWA Hydrant or Pipe Flush Flow Calculator

Attachment 8: Troubleshooting Checklist for Hydrants

GUAM WATERWORKS AUTHORITY	Gloria B. Nelson Public Service Building 688 Route 15 Mangilao, Guam 96913 vpangelinan@guamwaterworks.org	FIRE HYDRANT FLUSHING AND MAINTENANCE TROUBLESHOOTING CHECKLIST FOR HYDRANTS
---------------------------------	--	--

CONDITION	PROBABLE CAUSE	REMEDY
Debris and rubbish	Missing hydrant caps. Debris from a Main break. Tuberculation.	Place a cap. Second 2-3. Flush hydrant.
Cap problems	Loose, ill-fitting and frozen caps. Damaged or corroded gaskets or threads.	Replace caps. Replace gaskets and clean threads.
Vandalism	Graffiti. Physical damage done to the hydrant itself.	 Schedule paint work. Assess and repair as needed.
Leaks or damaged pipes	Burst pipes. Flange or gasket leaks. Corroded nuts and bolts.	Notify SCC to request assistance from the Pressure Line Unit to repair or replace. 2-3. Replace parts as needed.
Physical obstruction	Abandoned vehicle(s) or object(s). Overgrown vegetation	 Notify the Manager of the obstruction for further guidance. Notify SCC to request assistance from heavy equipment machinery to clear obstruction.

Page 1 of 1

Attachment 9: Employee's Acknowledgement Receipt

GUAM WATERWORKS AUTHORITY	Gloria B. Nelson Pu 688 Route 15 Mangilao, Guam 96 vpangelinan@quar	iblic Service Building 3913 nwaterworks.org	MAINTENANC	IT FLUSHING AN E ACKNOWLEDG	
I, the undersigned, an en of SOP-1500-WD-002 e	entitled "Fire Hy				
Employee's Name/Badg	e <mark>No.</mark> :	Employee's Sig	nature:	Date:	
		Page 1 of 1			